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Multi-agent formation

A geometrical shape formed by multiple agents in a space.
Represented by a graph (vertices=agents).
Examples:

A group of ground vehicles,
A group of flying multi-copters.
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Condition for unique formation shape under
(distance) rigidity

(Distance) rigidity is a condition in order that the formation of interest is
uniquely defined under given distance constraints.
(Distance) rigidity has been widely studied in the literature.1

(a) Flexible formation. (b) Rigid formation.

1L. Asimow and B. Roth. “The rigidity of graphs”. In: Transactions of the American
Mathematical Society 245.11 (1978), pp. 279–289; B. Hendrickson. “Conditions for
unique graph realizations”. In: SIAM Journal on Computing 21.1 (1992), pp. 65–84.
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Condition for unique formation shape under
bearing rigidity

Bearing rigidity is a condition in order that the formation of interest is
uniquely defined under given bearing constraints.
Bearing rigidity has been studied in the literature.2

2S. Zhao and D. Zelazo. “Bearing rigidity and almost global bearing-only
formation stabilization”. In: IEEE Transactions on Automatic Control 61.5 (2016),
pp. 1255–1268.
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Condition for unique formation shape
under weak rigidity

Rigidity with distance- and angle-constraint is named weak rigidity.
Weak rigidity is a condition in order that the formation of interest is
uniquely defined under given distance and angle constraints.
Weak rigidity has been recently studied in the literature.3

(a) Flexible formation.

θ

(b) Weak rigid formation.

3Myoung-Chul Park, Hong-Kyong Kim, and Hyo-Sung Ahn. “Rigidity of
Distance-based Formations with Additional Subtended-angle Constraints”. In: Proc.
of the 17th International Conference on Control, Automation and Systems (ICCAS).
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Contribution: Generalized rigidity
Rigidity with distance-, angle- and bearing-constraint is named
generalized rigidity.
Generalized rigidity is a condition in order that the formation of
interest is uniquely defined under given distance, angle and
bearing constraints.
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(a) Triangular formation characterized by 1-
distance, 2-bearing and 1-angle constraints.
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Motivation

To design a formation control system in networks with
heterogeneous measurements.

To avoid phenomena on flip ambiguity.
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Example of flip ambiguity
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(b)

Figure. Hexagonal formation characterized by 4-distance and 6-angle
constraints.
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Notations and terminologies

For a given graph G = (V, E ,A), where V is the vertex set, E is
the edge set, and A is the angle set.
dij: distance constraint assigned to (i, j) ∈ ED.
gij: bearing constraint assigned to (i, j) ∈ EB.
ED ∩ EB = ∅ and E = ED ∪ EB .
θk

ij: angle constraint assigned to (k, i, j) ∈ A.

pi ∈ Rd : position vector of agent i.
p , (p1, . . . ,pn) ∈ Rdn is called a configuration in Rd.
(G,p) is called a framework (formation).
zij , pi − pj: relative position.
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Infinitesimal generalized rigidity

The generalized rigidity function FG : Rdn → R(mD+w+dmB) is
defined as

FG(p) , [‖z1‖2, ..., ‖zmD‖2,A1, ...,Aw, g>1 , · · · , g>mB
]>

where mD = |ED|,mB = |EB|,w = |A| and Ah = cos θh. The rigidity
function describes constraints of distances, angles and bearings
in given framework.
The generalized rigidity matrix is defined as the Jacobian of the
rigidity function as follows

RG(p) ,
∂FG(p)

∂p
∈ R(mD+w+dmB)×dn.
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Infinitesimal generalized rigidity

If ḞG = RG(p)δp = 0, then δp is called an infinitesimal motion of (G,p).

Definition (Trivial infinitesimal generalized motion)
An infinitesimal motion of a framework (G, p) is called trivial if it
corresponds to a rigid-body translation of the entire framework4.

Definition (Infinitesimal generalized rigidity)
A framework (G, p) is infinitesimally generalized rigid in Rd if all of
infinitesimal generalized motions are trivial.

4I do not explain the case of ED = ∅ to avoid confusion.
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Infinitesimal generalized rigidity

Theorem
A framework (G, p) with n ≥ 3 and ED 6= ∅ is infinitesimally
generalized rigid in Rd if and only if the generalized rigidity matrix
RG(p) is of rank dn− d5.

Rank condition of RG(p)⇒ infinitesimally generalized rigid

5Infinitesimal motions correspond to rigid-body translations of entire framework.
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Its application to formation control problem

We assume that each agent is governed by a single integrator.
Gradient flow law is employed as follows

ṗ = u , −RG(p)>e(p). (1)

Theorem
Assume that a desired formation p∗ is infinitesimally generalized rigid,
and initial formation p(0) is sufficiently close to the desired formation.
Then, under the system (1), p = p∗ is asymptotically stable.

Assumption
Agents to measure bearings have a global reference frame.
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Desired formation
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Figure. Graph for desired formation with 1-distance, 3-bearing and 6-angle
constraints in R2.
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(a) Trajectories of 6 agents from initial formation to
final formation.

(b) Errors as time goes on.

Figure. Numerical simulations on a 6-agent formation. The symbols eD
ij and

ek
ij denote the squared distance error and cosine error, respectively, defined

as eij = ‖zgij‖2 − ‖z∗gij
‖2, (i, j) ∈ ED and ek

ij = Ahkij − A∗hkij
, (k, i, j) ∈ A. Also, the

symbols eBx
ij and eBy

ij denote the x-coordinate and y-coordinate, respectively,
of the bearing error defined as eB

ij = gbij − g∗bij
(i, j) ∈ EB.
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Simulation
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(a) Trajectories of 6 agents. (b) Errors.

Figure. Numerical simulation on a 6-agent formation.
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Summary

Generalized rigidity using distance, angle and bearing
constraints.

Formation control with the generalized rigidity.
we can design a formation control system in networks with
heterogeneous measurements.
we can avoid phenomena on flip ambiguity.

Future work
To design a control system without the assumption that agents to
measure bearings have a global reference frame.
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Thanks for your attention.
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