Almost Global Convergence on (d+1)-Agent Formations Employing Narrow Weak Rigidity in the d-Dimensional Space

Seong-Ho Kwon and Hyo-Sung Ahn

School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST)

The 15th IEEE International Conference on Control and Automation (ICCA), Edinburgh, Scotland

July 16-19, 2019

Table of contents

- 1 Rigidity theory with distance- and subtended angle-constraint
- 2 Application to formation control
- 3 Simulation example
- 4 Summary

- 1 Rigidity theory with distance- and subtended angle-constraint
- 2 Application to formation control
- 3 Simulation example
- 4 Summary

Multi-agent formation

- A geometrical shape formed by multiple agents in a space.
- Represented by a graph (vertices=agents).
- Examples:
 - A group of ground vehicles,
 - A group of flying multi-copters.

Condition for unique formation shape under (distance) rigidity

- (Distance) rigidity is a condition in order that the formation of interest is uniquely defined under given distance constraints.
- (Distance) rigidity has been widely studied in the literature.¹

¹L. Asimow and B. Roth. "The rigidity of graphs". In: *Transactions of the American Mathematical Society* 245.11 (1978), pp. 279–289; B. Hendrickson. "Conditions for unique graph realizations". In: *SIAM Journal on Computing* 21.1 (1992), pp. 65–84.

Condition for unique formation shape under narrow weak rigidity

- Rigidity with distance- and subtended angle-constraint is named narrow weak rigidity.
- Narrow weak rigidity is a condition in order that the formation of interest is uniquely defined under given distance constraints and subtended angle constraints².

(a) Flexible formation.

(b) Narrow weak rigid formation.

²Myoung-Chul Park, Hong-Kyong Kim, and Hyo-Sung Ahn. "Rigidity of Distance-based Formations with Additional Subtended-angle Constraints". In: *Proc. of the 17th International Conference on Control, Automation and Systems (ICCAS)*.

Comparison of weak rigidity and narrow weak rigidity

- Weak rigidity³ is an extended version of the narrow weak rigidity
- Weak rigidity ightarrow angle constraint: $\cos heta_{ij}^k$
- Narrow weak rigidity \to angle constraint: $z_{ik}^{\top}z_{jk} = \|z_{ik}\|\|z_{jk}\|\cos\theta_{ij}^k$

(a) Narrow weak rigid formation.

(b) Weak rigid formation.

(c) Weak rigid formation.

³Seong-Ho Kwon et al. "Infinitesimal weak rigidity and stability analysis on three-Agent formations". In: *Proc. of the 2018 57th SICE Annual Conference*.

Motivation and contribution

- There is no result on exponential stability of 4-agent formations in 3-dimensional space w.r.t both weak rigidity.
- To control a tetrahedral formation with distance and angle constraints in 3-dimensional space w.r.t narrow weak rigidity.

Figure. Tetrahedral formation with 3 distance and 3 angle constraints in \mathbb{R}^3 .

- 1 Rigidity theory with distance- and subtended angle-constraint
- 2 Application to formation control
- 3 Simulation example
- 4 Summary

Notations and terminologies

- For a given undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} is the vertex set and \mathcal{E} is the edge set.
- $\mathbf{p}_i \in \mathbb{R}^d$: position vector of agent i.
- $\mathbf{p} \triangleq (\mathbf{p}_1, \dots, \mathbf{p}_n) \in \mathbb{R}^{dn}$ is called a *configuration* in \mathbb{R}^d .
- \blacksquare $(\mathcal{G}, \mathbf{p})$ is called a *framework (formation)*.
- d_{ij} : distance constraint assigned to $(i,j) \in \mathcal{E}$.
- θ_{ii}^k : angle constraint assigned to $(k, i, j) \in \mathcal{A}$.
- **z**_{ij} \triangleq **p**_i **p**_j: relative position.
- \blacksquare d(dimension) = 3.
- Framework always includes the angle set A.

Infinitesimal narrow weak rigidity (INWR)

■ The narrow weak rigidity function $F_W^N: \mathbb{R}^{dn} \to \mathbb{R}^{(m_d+m_a)}$ is defined as

$$F_W^N(\mathbf{p}) \triangleq [\|\mathbf{z}_1\|^2, ..., \|\mathbf{z}_{m_d}\|^2, A_1, ..., A_{m_a}]^{\top}$$

where $m_d = |\mathcal{E}|, m_a = |\mathcal{A}|$ and $A_h = A_{h_{kij}} \triangleq z_{ik}^{\top} z_{jk}, (k, i, j) \in \mathcal{A}, h \in \{1, ..., m_a\}$. The rigidity function describes constraints of distances and subtended angles in given framework.

■ The *narrow weak rigidity matrix* is defined as the Jacobian of the rigidity function as follows

$$R_W^N(\mathbf{p}) \triangleq \frac{\partial F_W^N(\mathbf{p})}{\partial \mathbf{p}} \in \mathbb{R}^{(m_d+m_a) \times dn}.$$

Infinitesimal narrow weak rigidity (INWR)

■ If $\dot{F}_W^N = R_W^N(\mathbf{p})\delta\mathbf{p} = 0$, then $\delta\mathbf{p}$ is called an infinitesimal motion of $(\mathcal{G}, \mathbf{p})$.

Definition (Trivial infinitesimal motion)

An infinitesimal motion of a framework (\mathcal{G}, p) is called *trivial* if it corresponds to rigid-body translation and rotation of the entire framework.

Definition (INWR)

A framework (\mathcal{G}, p) with \mathcal{A} satisfies *infinitesimal narrow weak rigidity* (INWR) in \mathbb{R}^d if all of infinitesimal motions are trivial.

Figure. Trivial infinitesimal motions: rigid-body translation and rotation in \mathbb{R}^2 .

Infinitesimal narrow weak rigidity (INWR)

Theorem

A framework (\mathcal{G},p) with \mathcal{A} satisfies infinitesimal narrow weak rigidity (INWR) in \mathbb{R}^d if and only if $R_W^N(p)$ is of rank $dn - d(d+1)/2^1$.

■ Rank condition of $R_W^N(p) \Rightarrow INWR$

¹Infinitesimal motions correspond to rigid-body translations and rotations of entire framework.

Its application to formation control problem

- We assume that each agent is governed by a single integrator.
- Gradient flow law is employed as follows

$$\dot{p} = u = -\left(\nabla\phi\right)^{\top}.\tag{1}$$

where $\phi = \frac{1}{2}e^{\top}(p)e(p)$ and $e(p) = [d_c(p)^{\top}c_c(p)^{\top}]^{\top} - [d_c^{*\top}c_c^{*\top}]^{\top}$. $(d_c(p) = [\dots, \|z_{g_{ij}}\|^2, \dots]_{(i,j) \in \mathcal{E}}^{\top}, c_c(p) = [\dots, A_{h_{kij}}, \dots]_{(k,i,j) \in \mathcal{A}}^{\top})$

Figure. Tetrahedral formation with 3 distance and 3 angle constraints in \mathbb{R}^3 .

Its application to formation control problem

$$\dot{p} = u = -(\nabla \phi)^{\top}$$

$$= -R_W^{N \top}(p)e(p)$$

$$= -\begin{bmatrix} 2z_{12}e_1 + 2z_{13}e_2 + 2z_{14}e_3 + \mathbf{e_A} \\ -2z_{12}e_1 - z_{13}e_{A_1} - z_{14}e_{A_2} \\ -2z_{13}e_2 - z_{12}e_{A_1} - z_{14}e_{A_3} \\ -2z_{14}e_3 - z_{12}e_{A_2} - z_{13}e_{A_3} \end{bmatrix}$$
(2)

where
$$\mathbf{e_A} = (z_{12} + z_{13})e_{A_1} + (z_{12} + z_{14})e_{A_2} + (z_{13} + z_{14})e_{A_3}, e_1 = \|z_{12}\|^2 - \|z_{12}^*\|^2, e_2 = \|z_{13}\|^2 - \|z_{13}^*\|^2, e_3 = \|z_{14}\|^2 - \|z_{14}^*\|^2, e_{A_1} = z_{12}^\top z_{13} - z_{12}^{*\top} z_{13}^*, e_{A_2} = z_{12}^\top z_{14} - z_{12}^{*\top} z_{14}^*, e_{A_3} = z_{13}^\top z_{14} - z_{13}^{*\top} z_{14}^*.$$

Its application to formation control problem

All equilibria are denoted by

$$\mathcal{P}^* = \{ p \in \mathbb{R}^{dn} \mid e = 0 \}$$
 :desired equilibrium set, (3)

$$\mathcal{P}_i = \{p \in \mathbb{R}^{dn} \mid {R_W^N}^{ op} e = 0, e
eq 0\}$$
 :incorrect equilibrium set. (4)

Lemma

In the case of (d+1)-agent formations in \mathbb{R}^d , an incorrect equilibrium \bar{p} always lies on a hyperplane.

Lemma

Any incorrect equilibrium point \bar{p} of the system (2) is unstable.

Theorem (Main result)

If a framework $(\mathcal{G}, p(0))$ with \mathcal{A} satisfies INWR, then p(0) converges to a point in \mathcal{P}^* as $t \to \infty$ exponentially fast.

- 1 Rigidity theory with distance- and subtended angle-constraint
- 2 Application to formation control
- 3 Simulation example
- 4 Summary

Desired formation

Figure. Tetrahedral formation with 3 distance and 3 angle constraints in \mathbb{R}^3 .

Simulation

(a) Trajectories of 4-agent forma- (b) Errors of 3 distance and 3 angle contion in \mathbb{R}^3 .

- 1 Rigidity theory with distance- and subtended angle-constraint
- 2 Application to formation control
- 3 Simulation example
- 4 Summary

Summary

- Narrow weak rigidity using distance and subtended angle constraints.
- Tetrahedral Formation control in 3-dimensional space with the INWR.
 - Exponential convergence if an initial point satisfies INWR.
- Future work
 - To control a tetrahedral formation in 3-dimensional space with the weak rigidity.

References I

- [1] L. Asimow and B. Roth. "The rigidity of graphs". In: *Transactions of the American Mathematical Society* 245.11 (1978), pp. 279–289.
- [2] B. Hendrickson. "Conditions for unique graph realizations". In: *SIAM Journal on Computing* 21.1 (1992), pp. 65–84.
- [3] Myoung-Chul Park, Hong-Kyong Kim, and Hyo-Sung Ahn. "Rigidity of Distance-based Formations with Additional Subtended-angle Constraints". In: *Proc. of the* 17th International Conference on Control, Automation and Systems (ICCAS).
- [4] Seong-Ho Kwon, Minh Hoang Trinh, Koog-Hwan Oh, Shiyu Zhao, and Hyo-Sung Ahn. "Infinitesimal weak rigidity and stability analysis on three-Agent formations". In: *Proc. of the 2018 57th SICE Annual Conference*.

Summary

Thanks for your attention.