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Multi-agent formation

m A geometrical shape formed by multiple agents in a space.
m Represented by a graph (vertices=agents).

m Examples:

m A group of ground vehicles,
m A group of flying multi-copters.

LY
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Condition for unique formation shape under
(distance) rigidity

m (Distance) rigidity is a condition in order that the formation of interest is
uniquely defined under given distance constraints.

m (Distance) rigidity has been widely studied in the literature.’

(a) Flexible formation. (b) Rigid formation.

L. Asimow and B. Roth. “The rigidity of graphs”. In: Transactions of the American
Mathematical Society 245.11 (1978), pp. 279-289; B. Hendrickson. “Conditions for
unique graph realizations”. In: SIAM Journal on Computing 21.1 (1992), pp. 65-84.
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Condition for unique formation shape

under narrow weak rigidity
m Rigidity with distance- and subtended angle-constraint is named
narrow weak rigidity.

m Narrow weak rigidity is a condition in order that the formation of interest
is uniquely defined under given distance constraints and subtended
angle constraints?.

(a) Flexible formation. (b) Narrow weak rigid formation.

2Myoung-Chul Park, Hong-Kyong Kim, and Hyo-Sung Ahn. “Rigidity of
Distance-based Formations with Additional Subtended-angle Constraints”. In: Proc.
of the 17th International Conference on Control, Automation and Systems (ICCAS).
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Comparison of weak rigidity and narrow weak rigidity

m Weak rigidity® is an extended version of the narrow weak rigidity
m Weak rigidity — angle constraint: cos 6

m Narrow weak rigidity — angle constraint: z; z = ||zl ||| cos 8

k
ol
9 // 9 \\
i J d\e, _®
(a) Narrow weak (b) Weak rigid for- (c) Weak rigid for-
rigid formation. mation. mation.

3Seong-Ho Kwon et al. “Infinitesimal weak rigidity and stability analysis on
three-Agent formations”. In: Proc. of the 2018 57th SICE Annual Conference.
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Motivation and contribution

m There is no result on exponential stability of 4-agent formations
in 3-dimensional space w.r.t both weak rigidity.

m To control a tetrahedral formation with distance and angle
constraints in 3-dimensional space w.r.t narrow weak rigidity.

dy dig

3

Figure. Tetrahedral formation with 3 distance and 3 angle constraints in R3.
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Notations and terminologies

m For a given undirected graph G = (V, £), where V is the vertex
set and ¢ is the edge set.

m p; € R? : position vector of agent .
®p=(py,...,p.) € R"is called a configuration in R?.
m (G,p) is called a framework (formation).

m d;;: distance constraint assigned to (i,j) € €.

[ Hf;: angle constraint assigned to (k,i,j) € A.

m z; £ p; — p;: relative position.

m d(dimension) = 3.

m Framework always includes the angle set A.
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Infinitesimal narrow weak rigidity (INWR)

m The narrow weak rigidity function FY, : R% — R("+ma) js defined
as

Fiy(p) & (21, ... |2, |1* A, oo A ] T

where my = |€],m, = |A| and

Ap = Apy, = 2g gk, (koi,j) € A h € {1,...,m,}. The rigidity function
describes constraints of distances and subtended angles in
given framework.

m The narrow weak rigidity matrix is defined as the Jacobian of the
rigidity function as follows

OFy (p)
RN Y w R(md+ma) xdn .
w(p) op €
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Infinitesimal narrow weak rigidity (INWR)
m If £, = RY,(p)dp = 0, then Jp is called an infinitesimal motion of (G, p).

Definition (Trivial infinitesimal motion)
An infinitesimal motion of a framework (G, p) is called trivial if it corresponds
to rigid-body translation and rotation of the entire framework.

Definition (INWR)
A framework (G, p) with A satisfies infinitesimal narrow weak rigidity (INWR)
in RY if all of infinitesimal motions are trivial.

Figure. Trivial infinitesimal motions: rigid-body translation and rotation in R2.
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Infinitesimal narrow weak rigidity (INWR)

Theorem
A framework (G, p) with A satisfies infinitesimal narrow weak rigidity
(INWR) in RY if and only if RY,(p) is of rank dn — d(d + 1)/2".

m Rank condition of R},(p) = INWR

'Infinitesimal motions correspond to rigid-body translations and rotations of entire
framework.
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lts application to formation control problem
m We assume that each agent is governed by a single integrator.
m Gradient flow law is employed as follows

p=u=— (Vo). (1)

where ¢ = 1e" (p)e(p) and e(p) = [d.(p) "cc(p) "] — [d: T T]T.
(e(p) = [ g I 1 e ) = [ooe s A Jfen)

3

Figure. Tetrahedral formation with 3 distance and 3 angle constraints in R3.
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Its application to formation control problem

p=u=—(Ve)"
T
= —Ry (p)e(p)
2z10€1 + 2z713€2 + 2214€3 + €4
_ —2z10€1 — Z13€4, — Z14€4, (2)

—2z13€2 — Z12€4, — Z14€4,
—2z14€3 — Z12€4, — 213€4,

where ex = (z12 + z13)ea, + (212 + z1a)ea, + (213 + z14)ea,, €1 = ||z12]|* —
252 )17 e2 = I\lelli — 25511 e3 = HZ14||2T— I1z5 1% ea, = 2ha1s — 21y ' 2
en, = 2h214 — iy Tias €Ay = 213314 — Zi3 | iy
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lts application to formation control problem
All equilibria are denoted by
P* = {p € R | e = 0} :desired equilibrium set,  (3)
P ={peR™| R%Te = 0,e # 0} :incorrect equilibrium set.  (4)

Lemma
In the case of (d + 1)-agent formations in R?, an incorrect equilibrium
p always lies on a hyperplane.

Lemma
Any incorrect equilibrium point p of the system (2) is unstable.

Theorem (Main result)
If a framework (G, p(0)) with A satisfies INWR, then p(0) converges to
a point in P* as t — oo exponentially fast.
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Desired formation

3

Figure. Tetrahedral formation with 3 distance and 3 angle constraints in R3.
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Simulation

Trajectories Errors

errors

zaxs

2
yaxis ! 3 xaxis Time

(a) Trajectories of 4-agent forma- (b) Errors of 3 distance and 3 angle con-
tion in R3. straints.
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Summary

m Narrow weak rigidity using distance and subtended angle
constraints.

m Tetrahedral Formation control in 3-dimensional space with the
INWR.

m Exponential convergence if an initial point satisfies INWR.

m Future work

m To control a tetrahedral formation in 3-dimensional space with the
weak rigidity.
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