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Introduction

• About Hidden Markov Models,

Introduction           Background               Hidden Markov Models              Discussion              QnA

– Background
– Hidden Markov Models ( Definition, Problem, Solution, Application )
– Discussion

– References
• An introduction to Hidden Markov Models (L.R.Rabiner, 1986)
• Dynamic Alignment Kernels (CJCH Watkins 1999)• Dynamic Alignment Kernels (CJCH Watkins, 1999)
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Markov chains vs. Hidden Markov Models

• Markov Chains : current state is observable
• Hidden Markov Models : current state is non-observable

Introduction Background Hidden Markov Models              Discussion              QnA
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Markov Process :
Output Process : 

Which urn is selected at a time??
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Background

• 1st order Markov Assumption of transition
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• Conditional independency of observation parameter

– This is following Bayesian network representation
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Definition of Hidden Markov Models

• Definition : A variant of a finite state machine having a set of states(Q), 
an output alphabet(O), transition probabilities(A), output probabilities(B), 
and initial state probabilities( ) The current state is not observable
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and initial state probabilities(   ). The current state is not observable. 
Instead, each state produces an output with a certain probability (B). 
Usually the states(Q) and outputs(O) are understood, so an HMM is said 
to be a triple, (A, B,    ).

• Notation : 
– T : length of the observation sequence (total number of clock times)
– N : number of states in the model (ex: number of urns)
– M : number of observation symbols (ex: number of colors, RGB)M : number of observation symbols (ex: number of colors, RGB)
– Q : states (ex: urns)
– A : state transition probability distribution                     , 
– B : observation symbol probability distribution                         ,
– : initial state distribution                   ,
– O : output alphabet
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Example of HMM

• Number of states : N=3
• Number of observation : M=3, V={R,G,B}

I i i l di ib i [ 1 0 0 ]
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• Initial state distribution                = [ 1 , 0 , 0 ]
• State transition probability distribution

• Observation symbol probability distribution
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Problems

• There are three key problems

Introduction Background               Hidden Markov Models Discussion              QnA

[Problem 1] Given the observation sequence                                 and the model                      , 
how we compute               , the probability of the observation sequence.

=> Probability estimation problem

[Problem 2] Given the observation sequence                                , how we choose a state 
sequence                         which is optimal in some meaningful sense.

=> Optimal sequence problem

[P bl 3] H dj h d l i i[Problem 3] How we adjust the model parameters                       to maximize 
=> Parameter estimation problem
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Probability estimation problem

• Forward algorithm, Backward algorithm
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[Forward Algorithm]

By induction, t=1 to t=T
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Optimal sequence problem

• Viterbi algorithm
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Parameter estimation problem

• There is EM(Baum-Welch) algorithm
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Applications of HMM

• Alignment of bio-sequences (Leek, 1997)
Ex)
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• Pattern recognition
– Speech recognition (Rabiner, 1989)
– Character recognition (Freitag. 1998)
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Discussion

• Applying HMM on our research,

Introduction Background               Hidden Markov Models              Discussion QnA

– From output symbol sequence, we can model something
• We can model movement patterns of obstacles, insects, humans

– Using HMM concept on Reinforcement learning, we can use HMM 
like as predictor

• Overcoming incomplete perception with utile distinction memory (R.A. McCallum, 
1993)
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Any 
Questions?
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