Stability Analysis on Four Agent Tetrahedral Formations

Myoung-Chul Park¹, Zhiyong Sun², Brian D. O. Anderson², and Hyo-Sung Ahn¹

¹Gwangju Institute of Science and Technology, Korea

²National ICT Australia & Australian National University, Australia

53rd IEEE Conference on Decision and Control

December 15, 2014

Table of contents

- Introduction
- Preliminaries
- Main Analysis
- 4 Simulation
- Conclusion

Formation Control Problems

- Swarm of multi-agent systems¹
- Rendezvous problem: all members of the group to eventually rendezvous at single unspecified location.²
- Formation shape maintenance³
- A survey by Oh and his colleagues⁴

¹V. Gazi and K. M. Passino. "Stability analysis of swarms". In: *IEEE Transactions on Automatic Control* 48.4 (2003), pp. 692–697.

²J. Lin, A. S. Morse, and B. D. O. Anderson. "The multi-agent rendezvous problem". In: *Proceedings of the 42nd IEEE Conference on Decision and Control.* Dec. 2003, pp. 1508–1513.

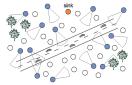
³B. D. O. Anderson et al. "Rigid graph control architectures for autonomous formations". In: *IEEE Control Systems Magazine* 28.6 (2008), pp. 48–63.

⁴K.-K. Oh, M.-C. Park, and H.-S. Ahn. "A survey of multi-agent formation control". In: *Automatica (in press)* (2014).

Applications

- To generate a group behavior of multi-agent system (for open purposes)
 - Cooperative surveillance by unmanned aerial vehicles
 - Localization and deployment of wireless sensor networks

(a) Two Parrot AR.Drones (picture by Halftermeyer)



(b) Visual sensor networks (picture by Costa)

Formation Shape Maintenance

- Relative displacements vs. inter-agent distances
- Undirected graph vs. directed graph

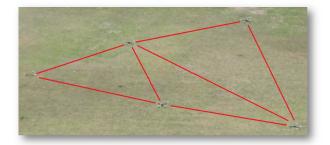


Figure. Formation flying of five quadrotors (picture by Kang)

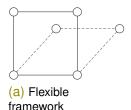
Problem Formulation

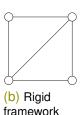
- Objectives
 - To achive a prescribed desired formation shape by maintaining prescribed inter-agent distances only
 - Control input using local measurements (relative displacements) only
- Method
 - Gradient-descent law minimizing a potential function

How to analyze the stability of the desired formation shape?

Distance-based Formation Control

- Inter-agent distances are actively controlled.
- The formation graph is required to be rigid.
- The shape of the graph in the first figure cannot be maintained in \mathbb{R}^2 by fixed edge lengths unlike the graph in the second figure.





\mathcal{K}_4 Formation Problem I

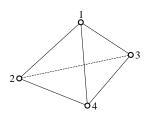
- We consider a group of four mobile agents moving in \mathbb{R}^3 .
- Each agent is supposed to maintain specified distances from the others.
- Similar problem in 2-dimensional space: Anderson et al. (2010)⁵,
 Dasgupta et al. (2011)⁶.

⁵B. D. O. Anderson et al. "Controlling four agent formations". In: *Proceedings of the 2nd IFAC Workshop on Distributed Estimation and Control in Networked Systems*. Sept. 2010, pp. 139–144.

⁶S. Dasgupta et al. "Controlling rectangular formations". In: *Proceedings of the 2011 Australian Control Conference*. Nov. 2011, pp. 44–49.

\mathcal{K}_4 Formation Problem II

- Interaction topology \Leftrightarrow Abstract graph = \mathcal{K}_4 (complete graph with four vertices) which is rigid in \mathbb{R}^3
- Agents ⇔ Vertices of the graph
- Formation shape
 ⇔ Framework (=abstract graph + position vectors of the vertices)



Notation

- Vertex set: $V = \{1, 2, 3, 4\}$
- Edge set: $\mathcal{E} = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$
- Position vector: $p_i \in \mathbb{R}^3$, $p = [p_1^T \ p_2^T \ p_3^T \ p_4^T]^T \in \mathbb{R}^{3|\mathcal{V}|}$
- Desired formation shape: $\bar{p} \in \mathbb{R}^{3|\mathcal{V}|}$
- Inter-agent distances: $d_{ij} = \|p_i p_j\|$, $\bar{d}_{ij} = \|\bar{p}_i \bar{p}_j\|$
- Squared-distance error: $e_{ij} = d_{ij}^2 \bar{d}_{ij}^2$
 - Objective: $\lim_{t\to\infty} e_{ij} = 0$ for all $(i,j)\in\mathcal{E}$

Assumption I

- Single-integrator dynamics: $\dot{p}_i = u_i$
- Quadratic potential function: $V(p) = \frac{1}{4} \sum_{(i,j) \in \mathcal{E}} e_{ij}^2$
- Gradient-descent law:

$$\dot{p} = -\left[\frac{\partial V}{\partial p}\right]^T = -[R(p)]^T e(p) = -(E(p) \otimes I_3)p.$$

No mismatched desired distances^{7,8}

⁷A. Belabbas et al. "Robustness Issues with Undirected Formations". In: *Proceedings of the 51st IEEE Conference on Decision and Control.* Dec. 2012, pp. 1445–1450.

⁸Z. Sun et al. "Non-robustness of gradient control for 3-D undirected formations with distance mismatch". In: *Proceedings of the 2013 Australian Control Conference*. Nov. 2013, pp. 369–374.

Assumption II

$$R(p) \triangleq \frac{1}{2} \frac{\partial e}{\partial p} = \begin{bmatrix} p_1^T - p_2^T & p_2^T - p_1^T & 0 & 0 \\ p_1^T - p_3^T & 0 & p_3^T - p_1^T & 0 \\ p_1^T - p_4^T & 0 & 0 & p_4^T - p_1^T \\ 0 & p_2^T - p_3^T & p_3^T - p_2^T & 0 \\ 0 & p_2^T - p_4^T & 0 & p_4^T - p_2^T \\ 0 & 0 & p_3^T - p_4^T & p_4^T - p_3^T \end{bmatrix}.$$

• Further we assume that $R(\bar{p})$ has full row rank, which is equivalent⁹ that the framework (\mathcal{K}_4, \bar{p}) is rigid¹⁰.

⁹B. Hendrickson. "Conditions for unique graph realizations". In: *SIAM Journal on Computing* 21.1 (1992), pp. 65–84.

¹⁰Rigorously say, infinitesimally rigid

Existing Result

- p(t) approaches equilibrium set as $t \to \infty$.
- The origin of the error dynamics is (locally) exponentially stable.¹¹

$$\dot{V} = -eRR^T e \le -4 \left[\lambda_{\mathsf{min}}(RR^T)\right] V \le 0.$$

• The matrix RR^T is positive definite near the desired formation shape from the assumption on \bar{p} . $\Rightarrow \lambda_{\min}(RR^T) > 0$.

¹¹F. Dörfler and B. Francis. "Formation control of autonomous robots based on cooperative behavior". In: *Proceedings of the 2009 European Control Conference*. Aug. 2009, pp. 2432–2437.

Analysis on Incorrect Equilibria I

Consider incorrect equilibrium set given by

$$\mathcal{P}_i = \left\{ p \in \mathbb{R}^{3|\mathcal{V}|} : \dot{p} = -[R(p)]^T e(p) = -(E(p) \otimes I_3) p = 0, \ e(p) \neq 0 \right\}.$$

- Instability of the incorrect equilibirum set
 - Linearization
 - Existence of positive eigenvalue

Analysis on Incorrect Equilibria II

Linearization:

$$\frac{\partial}{\partial p} \left[-\frac{\partial V}{\partial p} \right]^T = -H_V(p),$$

where H_V is the Hessian matrix of V by definition.

Investigate the existence of negative eigenvalue(s) of H_V.

Analysis on Incorrect Equilibria III

• Let p^* be an element in the incorrect equilibrium set. With an appropriate transformation, we have

$$ar{H}_V(p^*) = egin{bmatrix} imes & imes & 0 \ imes & imes & 0 \ 0 & 0 & E(p^*) \end{bmatrix}.$$

- Show the existence of negative eigenvalu(s) of $E(p^*)$, which can be done by finding a vector x such that $x^T[E(p^*) \otimes I_3]x < 0$.
- Actually, we have

$$x^{T}[E(p^{*}) \otimes I_{3}]x = -\sum_{(i,j) \in \mathcal{E}} [e_{ij}(p^{*})]^{2} < 0,$$

for
$$x = \bar{p}$$
.

Main Result I

Theorem

For almost every initial condition in $\mathbb{R}^{3|\mathcal{V}|}$, the trajectory p(t) of (1) converges to the desired equilibrium set \mathcal{P}_d , where $\mathcal{P}_d = \{p \in \mathbb{R}^{3|\mathcal{V}|} : e(p) = 0\}$.

$$\dot{p} = -\left[\frac{\partial V}{\partial p}\right]^{T}.\tag{1}$$

• What does "almost every initial condition" mean?

Main Result II

- Consider $Z(p) = [r_{12} \ r_{13} \ r_{14}] \in \mathbb{R}^{3\times 3}$, where $r_{ij} = p_i p_j$. Let $\Delta(p(t)) = \det Z(p(t))$
- $|\Delta|$ is proportional to the volume occupied by the tetrahedron in \mathbb{R}^3 .
- We can show that $\Delta(p^*) = 0$ for any p^* in the incorrect equilibrium set.

Main Result III

- Suppose that (\mathcal{K}_4, p^*) is a point formation or has a planner shape.
 - We can show that $\Delta(p(t))$ cannot converge to 0 if p(0) is not in $\mathcal{C} = \{p \in \mathbb{R}^{3|\mathcal{V}|} \colon \Delta(p) = 0\}.$
- Suppose that (\mathcal{K}_4, p^*) is a line formation.
 - We can show that p(t) is able to converge to p^* only if (\mathcal{K}_4, p) is a line formation.

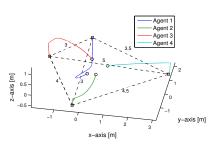
Main Result VI

Corollary

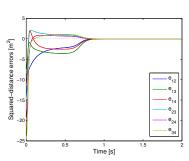
Under (1), the region of attraction for the desired equilibrium set \mathcal{P}_d is $\mathbb{R}^{3|\mathcal{V}|} \setminus \mathcal{C}$.

Simulation I

Initial condition: $p_1(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$, $p_2(0) = \begin{bmatrix} 0.5 & 0 & 0 \end{bmatrix}^T$, $p_3(0) = \begin{bmatrix} 0 & 1.5 & 0 \end{bmatrix}^T$, and $p_4(0) = \begin{bmatrix} 1 & 1 & 0.001 \end{bmatrix}^T$



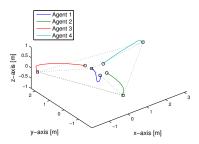
(c) Trajectories of the agents



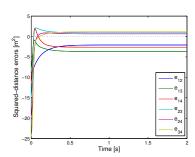
(d) Squared-distance errors

Simulation II

Initial condition:
$$p_1(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$$
, $p_2(0) = \begin{bmatrix} 0.5 & 0 & 0 \end{bmatrix}^T$, $p_3(0) = \begin{bmatrix} 0 & 1.5 & 0 \end{bmatrix}^T$, and $p_4(0) = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$



(e) Trajectories of the agents



(f) Squared-distance errors

Conclusion

Conclusion

- We provide an analysis on the behavior of K_4 formation with single-integrator modeled agents.
- Unlike the previous work¹², the desired formation shape is not restricted to be equilateral tetrahedron.

Future work

- Consideration of more complex agent dynamics
- Extention to more general formations having more than four agents
- Extention to formations having directed graph topology

¹²M.-C. Park, K. Jeong, and H.-S. Ahn. "Control of Undirected Four-agent Formations in 3-dimensional Space". In: *Proceedings of the 52nd IEEE Conference on Decision and Control*. Dec. 2013, pp. 1461–1465.

References I

- [1] V. Gazi and K. M. Passino. "Stability analysis of swarms". In: *IEEE Transactions on Automatic Control* 48.4 (2003), pp. 692–697.
- [2] J. Lin, A. S. Morse, and B. D. O. Anderson. "The multi-agent rendezvous problem". In: *Proceedings of the 42nd IEEE Conference on Decision and Control*. Dec. 2003, pp. 1508–1513.
- [3] B. D. O. Anderson et al. "Rigid graph control architectures for autonomous formations". In: *IEEE Control Systems Magazine* 28.6 (2008), pp. 48–63.
- [4] K.-K. Oh, M.-C. Park, and H.-S. Ahn. "A survey of multi-agent formation control". In: *Automatica (in press)* (2014).

References II

- [5] B. D. O. Anderson et al. "Controlling four agent formations". In: Proceedings of the 2nd IFAC Workshop on Distributed Estimation and Control in Networked Systems. Sept. 2010, pp. 139– 144.
- [6] S. Dasgupta et al. "Controlling rectangular formations". In: Proceedings of the 2011 Australian Control Conference. Nov. 2011, pp. 44–49.
- [7] A. Belabbas et al. "Robustness Issues with Undirected Formations". In: *Proceedings of the 51st IEEE Conference on Decision and Control*. Dec. 2012, pp. 1445–1450.

References III

- [8] Z. Sun et al. "Non-robustness of gradient control for 3-D undirected formations with distance mismatch". In: *Proceedings of the 2013 Australian Control Conference*. Nov. 2013, pp. 369–374.
- [9] B. Hendrickson. "Conditions for unique graph realizations". In: *SIAM Journal on Computing* 21.1 (1992), pp. 65–84.
- [10] F. Dörfler and B. Francis. "Formation control of autonomous robots based on cooperative behavior". In: *Proceedings of the 2009 European Control Conference*. Aug. 2009, pp. 2432–2437.
- [11] M.-C. Park, K. Jeong, and H.-S. Ahn. "Control of Undirected Four-agent Formations in 3-dimensional Space". In: *Proceedings of the 52nd IEEE Conference on Decision and Control*. Dec. 2013, pp. 1461–1465.